top of page

 How to Choose the Right Microsoft Fabric SKU: A Practical Guide for Executives

  • vinoddhotre
  • Nov 3
  • 5 min read

The Executive Dilemma 

Microsoft Fabric is changing how organizations think about analytics and data infrastructure. It brings together Power BI, Synapse, Data Factory, Data Engineering, Data Science, and OneLake under one unified SaaS platform. 

But with this unification comes complexity — how do you select the right SKU?  Executives often ask: 

“Should I buy Power BI Premium, use per-user licenses, or move to Fabric capacities?”  “How do I estimate costs for hundreds or thousands of users?”  “Where’s the break-even point between user licenses and capacity?” 

This guide will help you answer those questions with a structured framework. 


ree

 

1. Understand the Fabric pricing model 


Fabric pricing is built on two layers


A. Compute: Fabric Capacity (F-SKUs) 

You purchase compute capacity in the form of F-SKUs — F2, F4, F8, F16 … all the way up to F2048.  Each SKU provides a fixed number of Capacity Units (CUs) that are shared by all Fabric workloads — Power BI, Data Engineering, Data Warehouse, Data Factory, and others. 

You can choose: 

  • Pay-as-you-go (hourly billing, flexible) 

  • Reserved capacity (annual commitment, lower monthly rate) 


B. Storage: OneLake 

Storage is charged separately, typically around $0.023 per GB per month (similar to Azure Data Lake Storage pricing).  Remember: Mirroring, cache, and BCDR features can increase this cost slightly. 

 

2. How Power BI licensing fits into the picture 


Power BI still offers per-user licenses, independent of Fabric capacity: 

License Type 

Cost (approx.) 

Key Use 

Power BI Pro 

$14/user/month 

Needed to publish reports, share content 

Power BI Premium Per User (PPU) 

$24/user/month 

Larger datasets, AI features, paginated reports 

Power BI Capacity (F64+) 

Shared compute SKU 

Enables report viewing without individual paid licenses 

Key point:  Once you buy Fabric capacity of F64 or higher, report viewers don’t need individual Pro or PPU licenses — only report creators need one. 

This is the break-even zone where Fabric becomes more cost-efficient than per-user plans. 

 

3. Decision framework: how to pick your SKU 


Here’s a structured way for executives and data leaders to decide. 

Step 1 — Profile your users 

Segment your user base: 

  • Creators / Analysts – Build datasets, publish reports (need Pro or PPU). 

  • Viewers / Consumers – Only view dashboards (can use capacity instead of licenses). 

  • Admins / Engineers – Manage pipelines, storage, and governance. 

If most users are viewers, Fabric capacity usually wins.  If most users are creators, per-user licenses (PPU) might be cheaper. 

 

Step 2 — Estimate compute demand 

Ask your analytics or data team: 

  • How many refresh jobs run daily or hourly? 

  • Are workloads steady or spiky? 

  • How many users access reports simultaneously? 

Fabric SKUs differ in throughput and concurrency: 

SKU 

Typical Users Supported* 

Notes 

F2–F8 

Pilot / small workloads 

Great for POCs or dev 

F16–F64 

Mid-size teams 

Balanced performance 

F128+ 

Enterprise-scale 

Heavy compute and high concurrency 

* Actual performance depends on refresh frequency and workload type — always validate using the Fabric Capacity Estimator. 

 

Step 3 — Compare costs (Capacity vs. User-based) 

Here’s a simple break-even calculation you can use: 

Break-even user count = (Monthly Fabric Capacity Cost) ÷ (Per-user license cost) 

Example: 

  • F64 capacity (estimated at $5,000/month) 

  • Power BI Pro = $14/user/month 

  • Power BI PPU = $24/user/month 

Comparison 

Break-even users 

vs. Power BI Pro 

5,000 ÷ 14 ≈ 357 users 

vs. Power BI PPU 

5,000 ÷ 24 ≈ 208 users 

So, if you have >350 Power BI Pro users or >200 PPU users, moving to Fabric capacity (F64 or higher) could be more economical, especially when you include the benefits of shared compute for all workloads. 

 

Step 4 — Include storage and hidden costs 

Don’t forget: 

  • OneLake storage: ~$0.023/GB/month 

  • Mirroring and caching storage overhead 

  • Egress costs (cross-region data access) 

  • Azure OpenAI charges (for Copilot or semantic models) 

Pro Tip: Use internal telemetry (Power BI usage metrics, refresh logs, workspace stats) to estimate daily compute hours and total storage footprint before choosing an SKU. 

 

Step 5 — Model reservation vs. pay-as-you-go 

  • Steady usage → go for reserved capacity (1-year term, up to 30% cheaper) 

  • Unpredictable usage → start with pay-as-you-go (scale up/down as needed) 

Microsoft’s Fabric Capacity Estimator provides a good baseline model for both. 

 

4. Executive checklist for SKU selection 

# 

Checkpoint 

Why it matters 

Identify number of Pro/PPU users vs. Viewers 

Determines break-even 

Analyze peak concurrency 

Right-size F-SKU 

Check dataset size & refresh load 

Affects capacity performance 

Estimate OneLake storage & retention 

Hidden recurring cost 

Choose between reservation or pay-go 

Cost stability vs. flexibility 

Validate security, compliance & data residency 

Important for regulated sectors 

Review integration needs (Synapse, AI, Data Factory) 

Impacts compute utilization 

Consider organizational rollout phase 

Start small, scale with usage 

 

5. Practical examples 

Scenario 

Recommended Plan 

50 users, all developers/analysts 

Power BI Premium Per User (PPU) 

250 mixed users (50 creators + 200 viewers) 

Power BI Pro + Fabric F64 

1,000+ users, enterprise-wide reporting 

Fabric F128 or F256 (reserved) 

10 TB data, frequent ingestion & AI workloads 

Fabric F512+ with reserved capacity 

Seasonal workloads with spikes 

Start with F32/F64 pay-as-you-go, then monitor usage 

 

6. Total Cost of Ownership (TCO) considerations 


When comparing options, always include: 

  • Compute (Fabric SKU or per-user license) 

  • Storage (OneLake) 

  • Azure networking/egress 

  • Admin time (governance, capacity monitoring) 

  • Reservation discounts (annual savings) 

Many organizations find Fabric reserved capacity (F64+) yields the best 3-year TCO when scaling beyond 300–400 Power BI users. 

 

7. Governance and scalability 


Executives should ensure: 

  • Workspaces are organized by department or function 

  • Autoscale is monitored to prevent surprise overages 

  • Capacity metrics (CPU, refresh queue) are reviewed monthly 

  • Security and lineage tracking are enabled in the Fabric admin portal 

 

8. Helpful resources 🌐

Resource 

Description 

Official Fabric SKU and cost page 

Simulate capacity needs 

Per-user license comparison 

Architecture and features 

Details on data storage and pricing 

 

9. Final recommendations 

Organization Type 

Recommendation 

Small teams (≤100 users) 

Stay with Power BI PPU. It’s simpler and predictable. 

Mid-size org (100–400 users) 

Hybrid: Pro for creators, F64 capacity for viewers. 

Large enterprise (>400 users) 

Move to Fabric capacity (F128+), with reserved pricing and autoscale. 

Data-driven enterprises 

Consolidate Fabric workloads — unify Power BI, Data Factory, and Warehouse to gain full ROI. 

 

Takeaway:


Microsoft Fabric isn’t just another analytics product — it’s a consolidated data ecosystem.  Choosing the right SKU is less about the price tag and more about optimizing utilization and future-proofing your data strategy

Executives who align capacity choice with user segmentation, workload telemetry, and governance maturity will achieve the lowest TCO and the highest ROI



Choosing the right Microsoft Fabric SKU can define your data strategy’s success. Let Numlytics help you make the decision that drives performance and value.

Contact us at Numlytics.com

 

 
 
 

Comments


bottom of page